百味果 手机版

热门标签:

您的当前位置: 首页 常识

过一点可以画几条射线(小学几何知识点及公式大全)

100人浏览   2024-11-02 20:18:13



小学几何知识点及公式大全

一、线和角

1、线

直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

射线

射线只有一个端点;长度无限。

线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

平行线

在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

2、角

从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

角的分类

锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。

二、平面图形

1、三角形

特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。

计算公式:s=ah/2

分类

按角分

A、锐角三角形 :三个角都是锐角。

B、直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。

C、钝角三角形:有一个角是钝角。

按边分

A、不等边三角形:三条边长度不相等。

B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

C、等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

2、四边形

特征:

四边形是由四条线段围成的图形。

任意四边形的内角和是360度。

只有一组对边平行的四边形叫梯形。

两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。

⑵分类

① 长方形

A、特征:对边相等,4个角都是直角的四边形。有两条对称轴。

B、计算公式:c=2(a+b) s=ab

② 正方形

A、特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。

B、计算公式:c=4a s=a²

③ 平行四边形

A、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形容易变形。

B、计算公式:s=ah

④ 梯形

A、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。

B、计算公式:s=(a+b)h/2=mh

3、圆

圆的认识

圆是平面上的一种曲线图形。

圆中心的一点叫做圆心。一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。同圆或等圆的直径都相等

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。 圆有无数条对称轴。

圆心确定圆的位置,半径确定圆的大小。

圆的画法

把圆规的两脚分开,定好两脚间的距离(即半径);

把有针尖的一只脚固定在一点(即圆心)上;

把装有铅笔尖的一只脚旋转一周,就画出一个圆。

圆的周长

围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。用字母∏表示。

圆的面积:圆所占平面的大小叫做圆的面积。

计算公式:d=2r r=d/2 c=∏d c=2∏r s=∏r²

4、扇形

扇形的认识

一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。(半圆与直径的组合也是扇形)。显然, 它是由圆周的一部分与它所对应的圆心角围成。

圆上AB两点之间的部分叫做弧,读作“弧AB”。

顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

扇形有一条对称轴,是轴对称图形。

计算公式:s=n∏r²/360

5、环形

特征:由两个半径不相等的同心圆相减而成,有无数条对称轴。

计算公式:s=∏(R²-r²)

6、轴对称图形

特征

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等:

正方形有4条对称轴, 长方形有2条对称轴。

等腰三角形有2条对称轴,等边三角形有3条对称轴。

等腰梯形有一条对称轴,圆有无数条对称轴。

菱形有4条对称轴,扇形有一条对称轴。

三、立体图形

(一)长方体

1、特征

六个面都是长方形(有时有两个相对的面是正方形)。

相对的面面积相等,12条棱相对的4条棱长度相等。

有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。

2、计算公式:s=2(ab+ah+bh) V=sh V=abh

(二)正方体

1、特征

六个面都是正方形

六个面的面积相等

12条棱,棱长都相等

有8个顶点

正方体可以看作特殊的长方体

2、计算公式:S表=6a² v=a³

(三)圆柱

1、圆柱的认识

圆柱的上下两个面叫做底面。

圆柱有一个曲面叫做侧面。

圆柱两个底面之间的距离叫做高 。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

2、计算公式:s侧=ch s表=s侧+s底×2 v=sh/3

(四)圆锥

1、圆锥的认识

圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。

2、计算公式:v= sh/3

(五)球

1、认识

球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。

2、计算公式:d=2r

四、周长和面积

1、平面图形一周的长度叫做周长。

2、平面图形或物体表面的大小叫做面积。

3、常见图形的周长和面积计算公式

五、计算公式

1、正方形 (C:周长 S:面积 a:边长)

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2、正方体 (V:体积 a:棱长 )

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3、长方形( C:周长 S:面积 a:边长)

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

(2)体积=长×宽×高 V=abh

5、三角形 (s:面积 a:底 h:高)

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6、平行四边形 (s:面积 a:底 h:高)

面积=底×高 s=ah

7、梯形 (s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圆形 (S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径×л=2×л×半径 C=лd=2лr

(2)面积=半径×半径×л

9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)

体积=底面积×高÷3